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Abstract—Dynamic programming is an effective and powerful 
method for solving a specific class of problems. In computer 
science, it is used for solving complex problems by breaking a 
problem into subproblems, solving these subproblems just 
once, and storing solutions to these subproblems. Matrix chain 
product is an optimization problem that can be solved through 
dynamic programming. In this study, we aim to determine an 
optimal parenthesization of a matrix chain product for a given 
sequence by dynamic programming using both practical and 
theoretical approaches. 
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I. INTRODUCTION 

Dynamic programming is one of the sledgehammers of 
algorithms craft in optimizations, and its usefulness is 
valued by introduction to various applications [1]. It is an 
effective and powerful technique for solving a specific class 
of problems. Dynamic programming is one of the 
sophisticated algorithm design standards and is a 
formidable tool that provides classic algorithms for various 
optimization problems such as shortest path problems, 
traveling salesman problem, and knapsack problem, 
including matrix chain product problem [1]. In computer 
science, it is used for solving complex problems by 
breaking a problem into subproblems, solving these 
subproblems just once, and storing solutions to these 
subproblems. Matrix chain product is a well-known 
application of optimization problem. It is used in signal 
processing and network industry for routing [2]. In this 
study, we aim to determine an optimal parenthesization of a 
matrix chain product for a given sequence by dynamic 
programming using both practical and theoretical 
approaches. Dynamic programming is used when a solution 
can be recursively described in terms of solutions to 
subproblems (optimal substructure). An algorithm finds 
solutions to subproblems and stores them in memory for 
later use. It is much more efficient than “brute-force 
methods,” which solve the same subproblems frequently [3]. 

Steps of dynamic programming [4] 
1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a
bottom-up fashion.

4. Construct an optimal solution from
computed/stored information.

With the help of the abovementioned steps of dynamic 
programming, we will determine the optimal 
parenthesization of a matrix chain product using practical as 
well as theoretical approaches. 

The remainder of this paper is organized as follows. 
Section 2 describes the method that is used for matrix chain 
product, which includes algorithm to multiply two matrices, 
multiplication of two matrices, matrix chain product 
problem, different steps followed under dynamic 
programming approach, and pseudo code for matrix chain 
product. Section 3 describes the code for matrix chain 
product. Section 4 shows the output of matrix chain product. 
Section 5 explains the theoretical problem solving of matrix 
chain product. Section 6 shows the complexity of matrix 
chain product. Finally, section 7 concludes the study. 

II. METHOD

Suppose we have a sequence or chain A1, A2,…, An of n 
matrices to be multiplied (i.e., we want to compute the 
product A1A2…An), there are many possible ways 
(parenthesizations) to compute the product [5]. 

Example: Consider the chain A1, A2, A3, and A4 of four 
matrices. Let us compute the product A1A2A3A4. 

There are five possible ways: 

1. (A1(A2(A3A4)))

2. (A1((A2A3)A4))

3. ((A1A2)(A3A4))

4. ((A1(A2A3))A4)

5. (((A1A2)A3)A4)

To compute the number of scalar multiplications, we must 
know 

1. Algorithm to multiply two matrices

2. Matrix dimensions

A. Algorithm to Multiply Two Matrices [6] 

Input: Matrices Ap×q and Bq×r (with dimensions p × q and q 
× r) 
Result: Matrix Cp×r resulting from the product A·B 
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MATRIX-MULTIPLY(Ap×q, Bq×r) 
 1. for i ← 1 to p 

 2. for j ← 1 to r 

 3.     C[i, j] ← 0 

 4.     for k ← 1 to q 

 5.     C[i, j] ← C[i, j] + A[i, k] · B[k, j]  

  6.     return C 
 
Scalar multiplication in line 5 dominates time to compute C 
number of scalar multiplications = pqr 
 

B. Multiplication of Two Matrices [7] 

MATRIX-MULTIPLY(A, B) 

1. if A.columns ≠ B.rows 

2. error “incompatible dimensions” 

3. else let C be a new A.rows × B.columns matrix 

4. for i = 1 to A.rows 

5. for j = 1 to B.columns 

6. cij = 0 

7. for k = 1 to A.columns 

8. cij = cij + aik • bkj 

9. return C 

Example: Consider three matrices A10100, B1005, and C550 

There are two ways to parenthesize 
((AB)C) = D10  5 · C5  50 

AB  10 × 100 × 5 = 5000 scalar multiplications 

DC  10 × 5 × 50 = 2500 scalar multiplications      Total: 
7500 

(A(BC)) = A10  100 · E100  50 

BC  100 × 5 × 50 = 25000 scalar multiplications 

AE  10 × 100 × 50 = 50000 scalar multiplications  Total: 
7500 

 

C. Matrix Chain Product Problem 

Given a chain A1, A2,…, An of n matrices, where for i = 1, 
2,…, n, matrix Ai has dimension pi-1  pi 

Parenthesize the product A1A2…An such that the total 
number of scalar multiplications is minimized [6]. 

Counting the number of parenthesizations 

 
 
 
 
 
 
 

D. Dynamic Programming Approach [8] 

Step 1: Structure of an optimal parenthesization 
1. Let us use the notation Ai..j for the matrix that 

results from the product Ai Ai+1 … Aj  

2. An optimal parenthesization of the product 
A1A2…An splits the product between Ak and 
Ak+1 for some integer k where1 ≤ k < n  

3. First compute matrices A1..k and Ak+1..n; then 
multiply them to obtain the final matrix A1..n 

4. Key observation: Parenthesizations of 
subchains A1A2…Ak and Ak+1Ak+2…An must 
also be optimal if the parenthesization of chain 
A1A2…An is optimal. 

5. In other words, the optimal solution to a 
problem contains within it the optimal solution 
to subproblems. 

6.  

Step 2: Recursive solution [9] 

1. Let m[i, j] be the minimum number of scalar 
multiplications that are needed to compute Ai..j 

2. Minimum cost to compute A1..n is m[1, n] 

3. Suppose the optimal parenthesization of Ai..j 
splits the product between Ak and Ak+1 for some 
integer k where i ≤ k < j 

4. Ai..j = (Ai Ai+1…Ak)·(Ak+1Ak+2…Aj)= Ai..k · 
Ak+1..j  

5. Cost of computing Ai..j = cost of computing Ai..k 
+ cost of computing Ak+1..j + cost of multiplying 
Ai..k and Ak+1..j 

6. Cost of multiplying Ai..k and Ak+1..j is pi-1pk pj 

7. m[i, j ] = m[i, k] + m[k+1, j ] + pi-1pk pj 

                             for i ≤ k < j 

8. m[i, i ] = 0 for i = 1,2,…,n 

9. But optimal parenthesization occurs at one 
value of k among all possible i ≤ k < j 

10. Check all these and select the best one. 

 

Step 3: Computing the optimal cost [10] 

1. To keep track of how to construct an optimal 
solution, we use a split table s 

2. s[i, j ] = value of k at which Ai Ai+1 … Aj is split for 
optimal parenthesization  
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3. Algorithm 

 First compute costs for chains of length l = 1 
 Then for chains of length l = 2,3,… and so on 
 Compute the optimal cost in a bottom-up 

fashion 
Step 4: Constructing an optimal solution 

1. The algorithm computes the minimum cost 
table m and split table s 

2. The optimal solution can be constructed from 
the split table s 

3. Each entry s[i, j] = k shows where to split the 
product Ai Ai+1 … Aj for the minimum cost. 

 

E. Pseudo Code [4] 

The pseudo code for matrix chain product is as follows [4]: 
Input: Array p[0…n] containing matrix dimensions 

Result: Minimum cost table m and split table s 

MATRIX-CHAIN-ORDER(p) 

1. n = p.length − 1  

2. let m[1..n, 1..n] and s[1..n − 1, 2..n] be new tables 

3. for i = 1 to n 

4.        m[i, i] = 0 

5. for l = 2 to n                           // l is the chain length 

6.        for i = 1 to n – l + 1 

7.              j = i + l − 1 

8.              m[i, j] = ∞ 

9.              for k = i to j − 1 

10.                    q = m[i, k] + m[k + 1, j] + pi−1 pk pj 

11.                                If q < m[i, j] 

12.                       m[i, j] = q 

13.                        s[i, j] = k 

      14. return m and s 
 
The pseudo code for printing the optimal parenthesization 
of a matrix chain product is as follows [4]: 
 

PRINT-OPTIMAL-PARENS(s, i, j) 

 1. if i == j 

 2. print “A” i 

 3. else print “(” 

 4. PRINT-OPTIMAL-PARENS(s, i, s[i, j]) 

 5. PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j) 

 6. print “)” 
 
 
 

III. PROGRAM CODE FOR MATRIX CHAIN PRODUCT 

The program code for matrix chain product is as follows: 
1. public class MatrixMult 
2. { 
3. public static int[][] m; 
4. public static int[][] s; 

 
5. public static void main(String[] args) 
6. { 
7. int[] p = getMatrixSizes(args); 
8. int n = p.length-1; 
9. if (n < 2 || n > 15) 
10. { 
11. System.out.println("Wrong input"); 
12. System.exit(0); 
13. } 

 
14. System.out.println("######Using a recursive non 

Dyn. Prog. method:"); 
15. int mm = RMC(p, 1, n); 
16. System.out.println("Min number of multiplications: 

" + mm + "\n"); 
17. System.out.println("######Using bottom-top Dyn. 

Prog. method:"); 
18. MCO(p); 
19. System.out.println("Table of m[i][j]:"); 
20. System.out.print("j\\i|"); 
21. for (int i=1; i<=n; i++) 
22. System.out.printf("%5d ", i); 
23. System.out.print("\n---+"); 
24. for (int i=1; i<=6*n-1; i++) 
25. System.out.print("-"); 
26. System.out.println(); 
27. for (int j=n; j>=1; j--) 
28. { 
29. System.out.print(" " + j + " |"); 
30. for (int i=1; i<=j; i++) 
31. System.out.printf("%5d ", m[i][j]); 
32. System.out.println(); 
33. } 
34. System.out.println("Min number of multiplications: 

" + m[1][n] + "\n"); 
35. System.out.println("Table of s[i][j]:"); 
36. System.out.print("j\\i|"); 
37. for (int i=1; i<=n; i++) 
38. System.out.printf("%2d ", i); 
39. System.out.print("\n---+"); 
40. for (int i=1; i<=3*n-1; i++) 
41. System.out.print("-"); 
42. System.out.println(); 
43. for (int j=n; j>=2; j--) 
44. { 
45. System.out.print(" " + j + " |"); 
46. for (int i=1; i<=j-1; i++) 
47. System.out.printf("%2d ", s[i][j]); 
48. System.out.println(); 
49. } 
50. System.out.print("Optimal multiplication order: "); 
51. MCM(s, 1, n); 
52. System.out.println("\n"); 
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53. System.out.println("######Using top-bottom Dyn. 

Prog. method:"); 
54. mm = MMC(p); 
55. System.out.println("Min number of multiplications: 

" + mm); 
56. } 

 
57. public static int RMC(int[] p, int i, int j) 
58. { 
59. if (i == j) return(0); 
60. int m_ij = Integer.MAX_VALUE; 
61. for (int k=i; k<j; k++) 
62. { 
63. int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-

1]*p[k]*p[j]; 
64. if (q < m_ij) 
65. m_ij = q; 
66. } 
67. return(m_ij); 
68. } 

 
69. public static void MCO(int[] p) 
70. { 
71. int n = p.length-1;     // # of matrices in the product 
72. m = new int[n+1][n+1];  // create and 

automatically initialize array m 
73. s = new int[n+1][n+1]; 

 
74. for (int l=2; l<=n; l++) 
75. { 
76. for (int i=1; i<=n-l+1; i++) 
77. { 
78. int j=i+l-1; 
79. m[i][j] = Integer.MAX_VALUE; 
 
80. for (int k=i; k<=j-1; k++) 
81. { 
82. int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]; 
83. if (q < m[i][j]) 
84. { 
85. m[i][j] = q; 
86. s[i][j] = k; 
87. } 
88. } 
89. } 
90. } 
91. } 

 
92. public static void MCM(int[][] s, int i, int j) 
93. { 
94. if (i == j) System.out.print("A_" + i); 
95. else 
96. { 
97. System.out.print("("); 
98. MCM(s, i, s[i][j]); 
99. MCM(s, s[i][j]+1, j); 
100. System.out.print(")"); 
101. } 
102. } 

 
103. public static int MMC(int[] p) 
104. { 
105. int n = p.length-1; 
106. m = new int[n+1][n+1]; 
107. for (int i=0; i<=n; i++) 
108. for (int j=i; j<=n; j++) 
109. m[i][j] = Integer.MAX_VALUE; 
110. return(LC(p, 1, n)); 
111. } 

 
112. public static int LC(int[] p, int i, int j) 
113. { 
114. if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]); 

 
115. if (i == j) m[i][j] = 0; 
116. else 
117. { 
118. for (int k=i; k<j; k++) 
119. {  
120. int q = LC(p, i, k) + LC(p, k+1, j) + p[i-

1]*p[k]*p[j]; 
121. if (q < m[i][j]) 
122. m[i][j] = q; 
123. } 
124. } 
125. return(m[i][j]); 
126. } 

 
 

127. public static int[] getMatrixSizes(String[] ss) 
128. { 
129. int k = ss.length; 
130. if (k == 0) 
131. { 
132. System.out.println("No matrix dimensions 

entered"); 
133. System.exit(0); 
134. } 
135. int[] p = new int[k]; 
136. for (int i=0; i<k; i++) 
137. { 
138. try 
139. { 
140. p[i] = Integer.parseInt(ss[i]); 
141. if (p[i] <= 0) 
142. { 
143. System.out.println("Illegal input number " + k); 
144. System.exit(0); 
145. } 
146. } 
147. catch(NumberFormatException e) 
148. { 
149. System.out.println("Illegal input token " + ss[i]); 
150. System.exit(0); 
151. } 
152. } 
153. return(p); 
154. } 
155. } 
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IV. OUTPUT OF MATRIX CHAIN PRODUCT 

The output of matrix chain product is as follows: 
 

 
 
The abovementioned program code for matrix chain 
product was written in notepad and compiled and 
successfully executed in Java environment using Java 
Development Kit (jdk) version 8, jdk1.8.0_20-b26 (32 bit). 
The system configuration is as follows: 
 
Operating system Windows 7 Home Basic 

Processor 
Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz 
2.50 GHz 

RAM 4 GB 

System type 64-bit OS 

V. THEORETICAL PROBLEM SOLVING OF MATRIX CHAIN 

PRODUCT 

Problem statement: Determine an optimal 
parenthesization of a matrix chain product using dynamic 
programming for the given sequence (5, 10, 3, 12, 5, 50, 6)  
To determine an optimal parenthesization of a matrix chain 
product using dynamic programming, we considered a 
problem with the following sequence (5, 10, 3, 12, 5, 50, 6). 
The solution to this problem is explained below. 
Step 0:  
Consider P0 = 5, P1 = 10, P2 = 3, P3 = 12, P4 = 5, P5 = 50, P6 
= 6 
 
m[1, 1] = 0, m[2, 2] = 0, m[3, 3] = 0, m[4, 4] = 0, m[5, 5] = 
0, m[6, 6] = 0 
 
Step 1: 
 
m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj  
 
where k = j − 1 
 
m[1, 2] = m[1, 1] + m[2, 2] + (P0 × P1 × P2)  
             = 0 + 0 + (5 × 10 × 3) = 150 
 
m[2, 3] = m[2, 2] + m[3, 3] + (P1 × P2 × P3)  
             = 0 + 0 + (10 × 3 × 12) = 360 
 
m[3, 4] = m[3, 3] + m[4, 4] + (P2 × P3 × P4)  
             = 0 + 0 + (3 × 12 × 5) = 180 
m[4, 5] = m[4, 4] + m[5, 5] + (P3 × P4 × P5)  
             = 0 + 0 + (12 × 5 × 50) = 3000 

m[5, 6] = m[5, 5] + m[6, 6] + (P4 × P5 × P6)  
             = 0 + 0 + (5 × 50 × 6) = 1500 
Step 2: 
 
m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj  
 
where k = j − 1 
 
 
m[1, 3] = m[1, 1] + m[2, 3] + (P0 × P1 × P3)  
             = 0 + 360 + (5 × 10 × 12) = 600 
 
m[1, 3] = m[1, 2] + m[3, 3] + (P0 × P2 × P3)  
             = 150 + 0 + (5 × 3 × 12) = 330 
 
m[2, 4] = m[2, 2] + m[3, 4] + (P1 × P2 × P4)  
             = 0 + 180 + (10 × 3 × 5) = 330 
 
m[2, 4] = m[2, 3] + m[4, 4] + (P1 × P3 × P4)  
             = 360 + 0 + (10 × 12 × 5) = 960 
 
m[3, 5] = m[3, 3] + m[4, 5] + (P2 × P3 × P5)  
             = 0 + 3000 + (3 × 12 × 50) = 4800 
 
m[3, 5] = m[3, 4] + m[5, 5] + (P2 × P4 × P5)  
             = 180 + 0 + (3 × 5 × 50) = 930 
 
m[4, 6] = m[4, 4] + m[5, 6] + (P3 × P4 × P6)  
             = 0 + 1500 + (15 × 5 × 6) = 1860 
 
m[4, 6] = m[4, 5] + m[6, 6] + (P3 × P5 × P6)  
             = 3000 + 0 + (12 × 50 × 6) = 6600 
 
 
Step 3: 
 
m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj  
 
where k = j − 1 
 
 
m[1, 4] = m[1, 1] + m[2, 4] + (P0 × P1 × P4)  
             = 0 + 330 + (5 × 10 × 5) = 580 
 
m[1, 4] = m[1, 2] + m[3, 4] + (P0 × P2 × P4)  
             = 150 + 180 + (5 × 3 × 5) = 405 
 
m[1, 4] = m[1, 3] + m[4, 4] + (P0 × P3 × P4)  
             = 330 + 0 + (5 × 12 × 5) = 630 
 
m[2, 5] = m[2, 2] + m[3, 5] + (P1 × P2 × P5)  
             = 0 + 930 + (10 × 3 × 50) = 2430 
 
m[2, 5] = m[2, 3] + m[4, 5] + (P1 × P3 × P5)  
             = 360 + 3000 + (10 × 12 × 50) = 9360 
 
m[2, 5] = m[2, 4] + m[5, 5] + (P1 × P4 × P5)  
             = 330 + 0 + (10 × 5 × 50) = 2830 
 
m[3, 6] = m[3, 3] + m[4, 6] + (P2 × P3 × P6)  
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             = 0 + 1860 + (3 × 12 × 6) = 2076 
m[3, 6] = m[3, 4] + m[5, 6] + (P2 × P4 × P6)  
             = 180 + 1500 + (3 × 5 × 6) = 1770 
 
m[3, 6] = m[3, 5] + m[6, 6] + (P2 × P5 × P6)  
             = 930 + 0 + (3 × 50 × 6) = 1830 
 
Step 4: 
 
m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj  
 
where k = j − 1 
 
 
m[1, 5] = m[1, 1] + m[2, 5] + (P0 × P1 × P5)  
             = 0 + 2430 + (5 × 10 × 50) = 4930 
 
m[1, 5] = m[1, 2] + m[3, 5] + (P0 × P2 × P5)  
             = 150 + 930 + (5 × 3 × 50) = 1830 
 
m[1, 5] = m[1, 3] + m[4, 5] + (P0 × P3 × P5)  
             = 330 + 3000 + (5 × 12 × 50) = 6330 
 
m[1, 5] = m[1, 4] + m[5, 5] + (P0 × P4 × P5)  
             = 405 + 0 + (5 × 5 × 50) = 1655 
 
m[2, 6] = m[2 ,2] + m[3, 6] + (P1 × P2 × P6)  
             = 0 + 1770 + (10 × 3 × 6) = 1950 
 
m[2, 6] = m[2, 3] + m[4, 6] + (P1 × P3 × P6)  
             = 360 + 1860 + (10 × 12 × 6) = 2940 
 
m[2, 6] = m[2, 4] + m[5, 6] + (P1 × P4 × P6)  
             = 330 + 1500 + (10 × 5 × 6) = 2130 
 
m[2, 6] = m[2, 5] + m[6, 6] + (P1 × P5 × P6)  
             = 2430 + 0 + (10 × 50 × 6) = 5430 
 
Step 5: 
 
m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj  
 
where k = j − 1 
 
 
m[1, 6] = m[1, 1] + m[2, 6] + (P0 × P1 × P6)  
             = 0 + 1950 + (5 × 10 × 6) = 2250 
 
m[1, 6] = m[1, 2] + m[3, 6] + (P0 × P2 × P6)  
             = 150 + 1770 + (5 × 3 × 6) = 2010 
 
m[1, 6] = m[1, 3] + m[4, 6] + (P0 × P3 × P6)  
             = 330 + 1860 + (5 × 12 × 6) = 2550 
 
m[1, 6] = m[1, 4] + m[5, 6] + (P0 × P4 × P6)  
             = 405 + 1500 + (5 × 5 × 6) = 2055 
 
m[1, 6] = m[1, 5] + m[6, 6] + (P0 × P5 × P6)  
             = 1655 + 0 + (5 × 50 × 6) = 3155 
 

The optimal parenthesization of a matrix chain product 
using dynamic programming for the given sequence (5, 10, 
3, 12, 5, 50, 6) is ((A1 × A2)((A3 × A4)(A5 × A6))). From the 
above solution of the given problem, we can see that all 
possible ways of obtaining the parenthesization of a matrix 
chain product using dynamic programming are performed. 
In other words, all possible solutions are obtained, and from 
those solutions, the optimal solution is taken, i.e., from Step 
2 to Step 5, we have selected only those solutions that 
provide the least or minimum value, which can be reflected 
in the minimum cost table, as shown in Fig. 1. The 
respective k values are included in the split table, as shown 
in Fig. 2. 
 

 
 

Fig. 1. Minimum cost table 

 

Fig. 2. Split table 

 
Fig. 3. Tree for optimal parenthesization 
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Backtracking is a method that helps in determining the 
optimal parenthesization of a matrix chain product for a 
given sequence by dynamic programming (i.e., it helps in 
obtaining the final solution, as shown below). In Fig. 3, we 
observe that the leaf nodes in the tree for optimal 
parenthesization are (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), and 
(6, 6). However, to obtain these leaf nodes, we first check 
Step 5. In Step 5, the minimum value obtained is 2010, 
which is derived from m[1, 6], which is a combination of 
m[1, 2] and m[3, 6]. Hence, we consider (1, 6) as the first 
coordinate (Fig. 3). Now, we see that the value of m[i, j] in 
m[1, 6] is m[1, 2] and the value of m[k + 1, j] in m[1, 6] is 
m[3, 6], and thus, we check for m[1, 2] and m[3, 6] from 
Step 1 to 4. The desired value of m[1, 2] is found in Step 1 
and that of m[3, 6] is found in Step 3. We observe that m[1, 
2] has a single value (i.e., it does not have the concept of 
minimum values), and so, we observe that m[1, 2] is a 
combination of m[1, 1] and m[2, 2]. Thus, we can split (1, 2) 
as (1, 1) and (2, 2), as shown in Fig. 3. Now, for m[3, 6], 
we check in which step does it occur and we consider the 
minimum value. From our observation, we perceive that 
m[3, 6] is present in Step 3 and the minimum value is 1770. 
Furthermore, m[3, 6] is a combination of m[3, 4] and m[5, 
6]. Thus, we can split (3, 6) as (3, 4) and (5, 6), which can 
be seen in Fig. 3. Finally, we check for m[3, 4] and m[5, 6]. 
The abovementioned procedure is followed and (3, 4) is 
split as (3, 3) and (4, 4), whereas (5, 6) is split as (5, 5) and 
(6, 6) (Fig. 3). We stop when the leaf nodes are (1, 1), (2, 2), 
(3, 3), (4, 4), (5, 5), and (6, 6). From Fig. 3, we can now 
determine the optimal solution. First, we obtain (A1 × A2). 
Second, we obtain (A3 × A4) and (A5 × A6). Third, we 
combine ((A3 × A4)(A5 × A6)), and finally, we combine 
((A1 × A2)((A3 × A4)(A5 × A6))), which gives the final 
solution. 
 

VI.  COMPLEXITY OF MATRIX CHAIN PRODUCT 

The time complexity of matrix chain product is O(n3), and 
the space complexity of matrix chain product is O(n2) [10]. 

VII. CONCLUSION 

Matrix chain product problem encompasses the question 
how the optimal classification for performing a series of 
operations can be determined. Moreover, matrix chain 
product problem is not actually to perform multiplication 
but simply to decide the order to perform multiplication. 
Thus, we have successfully determined the optimal 
parenthesization of a matrix chain product for a given 
sequence by dynamic programming using practical as well 
as theoretical approaches. 
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