
Determining an Optimal Parenthesization of a
Matrix Chain Product using Dynamic

Programming
Vivian Brian Lobo1, Flevina D’souza1, Pooja Gharat1, Edwina Jacob1, and Jeba Sangeetha Augestin1

1Department of Computer Engineering,

St. Francis Institute of Technology (SFIT)
Mumbai, India 400103

Abstract—Dynamic programming is an effective and powerful
method for solving a specific class of problems. In computer
science, it is used for solving complex problems by breaking a
problem into subproblems, solving these subproblems just
once, and storing solutions to these subproblems. Matrix chain
product is an optimization problem that can be solved through
dynamic programming. In this study, we aim to determine an
optimal parenthesization of a matrix chain product for a given
sequence by dynamic programming using both practical and
theoretical approaches.

Keywords—dynamic programming, matrix chain product,
optimal solution, parenthesization; sequence

I. INTRODUCTION

Dynamic programming is one of the sledgehammers of
algorithms craft in optimizations, and its usefulness is
valued by introduction to various applications [1]. It is an
effective and powerful technique for solving a specific class
of problems. Dynamic programming is one of the
sophisticated algorithm design standards and is a
formidable tool that provides classic algorithms for various
optimization problems such as shortest path problems,
traveling salesman problem, and knapsack problem,
including matrix chain product problem [1]. In computer
science, it is used for solving complex problems by
breaking a problem into subproblems, solving these
subproblems just once, and storing solutions to these
subproblems. Matrix chain product is a well-known
application of optimization problem. It is used in signal
processing and network industry for routing [2]. In this
study, we aim to determine an optimal parenthesization of a
matrix chain product for a given sequence by dynamic
programming using both practical and theoretical
approaches. Dynamic programming is used when a solution
can be recursively described in terms of solutions to
subproblems (optimal substructure). An algorithm finds
solutions to subproblems and stores them in memory for
later use. It is much more efficient than “brute-force
methods,” which solve the same subproblems frequently [3].

Steps of dynamic programming [4]
1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a
bottom-up fashion.

4. Construct an optimal solution from
computed/stored information.

With the help of the abovementioned steps of dynamic
programming, we will determine the optimal
parenthesization of a matrix chain product using practical as
well as theoretical approaches.

The remainder of this paper is organized as follows.
Section 2 describes the method that is used for matrix chain
product, which includes algorithm to multiply two matrices,
multiplication of two matrices, matrix chain product
problem, different steps followed under dynamic
programming approach, and pseudo code for matrix chain
product. Section 3 describes the code for matrix chain
product. Section 4 shows the output of matrix chain product.
Section 5 explains the theoretical problem solving of matrix
chain product. Section 6 shows the complexity of matrix
chain product. Finally, section 7 concludes the study.

II. METHOD

Suppose we have a sequence or chain A1, A2,…, An of n
matrices to be multiplied (i.e., we want to compute the
product A1A2…An), there are many possible ways
(parenthesizations) to compute the product [5].

Example: Consider the chain A1, A2, A3, and A4 of four
matrices. Let us compute the product A1A2A3A4.

There are five possible ways:

1. (A1(A2(A3A4)))

2. (A1((A2A3)A4))

3. ((A1A2)(A3A4))

4. ((A1(A2A3))A4)

5. (((A1A2)A3)A4)

To compute the number of scalar multiplications, we must
know

1. Algorithm to multiply two matrices

2. Matrix dimensions

A. Algorithm to Multiply Two Matrices [6]

Input: Matrices Ap×q and Bq×r (with dimensions p × q and q
× r)
Result: Matrix Cp×r resulting from the product A·B

Vivian Brian Lobo et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 786-792

www.ijcsit.com 786

MATRIX-MULTIPLY(Ap×q, Bq×r)
 1. for i ← 1 to p

 2. for j ← 1 to r

 3. C[i, j] ← 0

 4. for k ← 1 to q

 5. C[i, j] ← C[i, j] + A[i, k] · B[k, j]

 6. return C

Scalar multiplication in line 5 dominates time to compute C
number of scalar multiplications = pqr

B. Multiplication of Two Matrices [7]

MATRIX-MULTIPLY(A, B)

1. if A.columns ≠ B.rows

2. error “incompatible dimensions”

3. else let C be a new A.rows × B.columns matrix

4. for i = 1 to A.rows

5. for j = 1 to B.columns

6. cij = 0

7. for k = 1 to A.columns

8. cij = cij + aik • bkj

9. return C

Example: Consider three matrices A10100, B1005, and C550

There are two ways to parenthesize
((AB)C) = D10  5 · C5  50

AB  10 × 100 × 5 = 5000 scalar multiplications

DC  10 × 5 × 50 = 2500 scalar multiplications Total:
7500

(A(BC)) = A10  100 · E100  50

BC  100 × 5 × 50 = 25000 scalar multiplications

AE  10 × 100 × 50 = 50000 scalar multiplications Total:
7500

C. Matrix Chain Product Problem

Given a chain A1, A2,…, An of n matrices, where for i = 1,
2,…, n, matrix Ai has dimension pi-1  pi

Parenthesize the product A1A2…An such that the total
number of scalar multiplications is minimized [6].

Counting the number of parenthesizations

D. Dynamic Programming Approach [8]

Step 1: Structure of an optimal parenthesization
1. Let us use the notation Ai..j for the matrix that

results from the product Ai Ai+1 … Aj

2. An optimal parenthesization of the product
A1A2…An splits the product between Ak and
Ak+1 for some integer k where1 ≤ k < n

3. First compute matrices A1..k and Ak+1..n; then
multiply them to obtain the final matrix A1..n

4. Key observation: Parenthesizations of
subchains A1A2…Ak and Ak+1Ak+2…An must
also be optimal if the parenthesization of chain
A1A2…An is optimal.

5. In other words, the optimal solution to a
problem contains within it the optimal solution
to subproblems.

6.

Step 2: Recursive solution [9]

1. Let m[i, j] be the minimum number of scalar
multiplications that are needed to compute Ai..j

2. Minimum cost to compute A1..n is m[1, n]

3. Suppose the optimal parenthesization of Ai..j
splits the product between Ak and Ak+1 for some
integer k where i ≤ k < j

4. Ai..j = (Ai Ai+1…Ak)·(Ak+1Ak+2…Aj)= Ai..k ·
Ak+1..j

5. Cost of computing Ai..j = cost of computing Ai..k
+ cost of computing Ak+1..j + cost of multiplying
Ai..k and Ak+1..j

6. Cost of multiplying Ai..k and Ak+1..j is pi-1pk pj

7. m[i, j] = m[i, k] + m[k+1, j] + pi-1pk pj

 for i ≤ k < j

8. m[i, i] = 0 for i = 1,2,…,n

9. But optimal parenthesization occurs at one
value of k among all possible i ≤ k < j

10. Check all these and select the best one.

Step 3: Computing the optimal cost [10]

1. To keep track of how to construct an optimal
solution, we use a split table s

2. s[i, j] = value of k at which Ai Ai+1 … Aj is split for
optimal parenthesization










 





2)()(

11
)(1

1

nifknpkP

nif
nP n

k

Vivian Brian Lobo et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 786-792

www.ijcsit.com 787

3. Algorithm

 First compute costs for chains of length l = 1
 Then for chains of length l = 2,3,… and so on
 Compute the optimal cost in a bottom-up

fashion
Step 4: Constructing an optimal solution

1. The algorithm computes the minimum cost
table m and split table s

2. The optimal solution can be constructed from
the split table s

3. Each entry s[i, j] = k shows where to split the
product Ai Ai+1 … Aj for the minimum cost.

E. Pseudo Code [4]

The pseudo code for matrix chain product is as follows [4]:
Input: Array p[0…n] containing matrix dimensions

Result: Minimum cost table m and split table s

MATRIX-CHAIN-ORDER(p)

1. n = p.length − 1

2. let m[1..n, 1..n] and s[1..n − 1, 2..n] be new tables

3. for i = 1 to n

4. m[i, i] = 0

5. for l = 2 to n // l is the chain length

6. for i = 1 to n – l + 1

7. j = i + l − 1

8. m[i, j] = ∞

9. for k = i to j − 1

10. q = m[i, k] + m[k + 1, j] + pi−1 pk pj

11. If q < m[i, j]

12. m[i, j] = q

13. s[i, j] = k

 14. return m and s

The pseudo code for printing the optimal parenthesization
of a matrix chain product is as follows [4]:

PRINT-OPTIMAL-PARENS(s, i, j)

 1. if i == j

 2. print “A” i

 3. else print “(”

 4. PRINT-OPTIMAL-PARENS(s, i, s[i, j])

 5. PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

 6. print “)”

III. PROGRAM CODE FOR MATRIX CHAIN PRODUCT

The program code for matrix chain product is as follows:
1. public class MatrixMult
2. {
3. public static int[][] m;
4. public static int[][] s;

5. public static void main(String[] args)
6. {
7. int[] p = getMatrixSizes(args);
8. int n = p.length-1;
9. if (n < 2 || n > 15)
10. {
11. System.out.println("Wrong input");
12. System.exit(0);
13. }

14. System.out.println("######Using a recursive non

Dyn. Prog. method:");
15. int mm = RMC(p, 1, n);
16. System.out.println("Min number of multiplications:

" + mm + "\n");
17. System.out.println("######Using bottom-top Dyn.

Prog. method:");
18. MCO(p);
19. System.out.println("Table of m[i][j]:");
20. System.out.print("j\\i|");
21. for (int i=1; i<=n; i++)
22. System.out.printf("%5d ", i);
23. System.out.print("\n---+");
24. for (int i=1; i<=6*n-1; i++)
25. System.out.print("-");
26. System.out.println();
27. for (int j=n; j>=1; j--)
28. {
29. System.out.print(" " + j + " |");
30. for (int i=1; i<=j; i++)
31. System.out.printf("%5d ", m[i][j]);
32. System.out.println();
33. }
34. System.out.println("Min number of multiplications:

" + m[1][n] + "\n");
35. System.out.println("Table of s[i][j]:");
36. System.out.print("j\\i|");
37. for (int i=1; i<=n; i++)
38. System.out.printf("%2d ", i);
39. System.out.print("\n---+");
40. for (int i=1; i<=3*n-1; i++)
41. System.out.print("-");
42. System.out.println();
43. for (int j=n; j>=2; j--)
44. {
45. System.out.print(" " + j + " |");
46. for (int i=1; i<=j-1; i++)
47. System.out.printf("%2d ", s[i][j]);
48. System.out.println();
49. }
50. System.out.print("Optimal multiplication order: ");
51. MCM(s, 1, n);
52. System.out.println("\n");

Vivian Brian Lobo et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 786-792

www.ijcsit.com 788

53. System.out.println("######Using top-bottom Dyn.

Prog. method:");
54. mm = MMC(p);
55. System.out.println("Min number of multiplications:

" + mm);
56. }

57. public static int RMC(int[] p, int i, int j)
58. {
59. if (i == j) return(0);
60. int m_ij = Integer.MAX_VALUE;
61. for (int k=i; k<j; k++)
62. {
63. int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-

1]*p[k]*p[j];
64. if (q < m_ij)
65. m_ij = q;
66. }
67. return(m_ij);
68. }

69. public static void MCO(int[] p)
70. {
71. int n = p.length-1; // # of matrices in the product
72. m = new int[n+1][n+1]; // create and

automatically initialize array m
73. s = new int[n+1][n+1];

74. for (int l=2; l<=n; l++)
75. {
76. for (int i=1; i<=n-l+1; i++)
77. {
78. int j=i+l-1;
79. m[i][j] = Integer.MAX_VALUE;

80. for (int k=i; k<=j-1; k++)
81. {
82. int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
83. if (q < m[i][j])
84. {
85. m[i][j] = q;
86. s[i][j] = k;
87. }
88. }
89. }
90. }
91. }

92. public static void MCM(int[][] s, int i, int j)
93. {
94. if (i == j) System.out.print("A_" + i);
95. else
96. {
97. System.out.print("(");
98. MCM(s, i, s[i][j]);
99. MCM(s, s[i][j]+1, j);
100. System.out.print(")");
101. }
102. }

103. public static int MMC(int[] p)
104. {
105. int n = p.length-1;
106. m = new int[n+1][n+1];
107. for (int i=0; i<=n; i++)
108. for (int j=i; j<=n; j++)
109. m[i][j] = Integer.MAX_VALUE;
110. return(LC(p, 1, n));
111. }

112. public static int LC(int[] p, int i, int j)
113. {
114. if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

115. if (i == j) m[i][j] = 0;
116. else
117. {
118. for (int k=i; k<j; k++)
119. {
120. int q = LC(p, i, k) + LC(p, k+1, j) + p[i-

1]*p[k]*p[j];
121. if (q < m[i][j])
122. m[i][j] = q;
123. }
124. }
125. return(m[i][j]);
126. }

127. public static int[] getMatrixSizes(String[] ss)
128. {
129. int k = ss.length;
130. if (k == 0)
131. {
132. System.out.println("No matrix dimensions

entered");
133. System.exit(0);
134. }
135. int[] p = new int[k];
136. for (int i=0; i<k; i++)
137. {
138. try
139. {
140. p[i] = Integer.parseInt(ss[i]);
141. if (p[i] <= 0)
142. {
143. System.out.println("Illegal input number " + k);
144. System.exit(0);
145. }
146. }
147. catch(NumberFormatException e)
148. {
149. System.out.println("Illegal input token " + ss[i]);
150. System.exit(0);
151. }
152. }
153. return(p);
154. }
155. }

Vivian Brian Lobo et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 786-792

www.ijcsit.com 789

IV. OUTPUT OF MATRIX CHAIN PRODUCT

The output of matrix chain product is as follows:

The abovementioned program code for matrix chain
product was written in notepad and compiled and
successfully executed in Java environment using Java
Development Kit (jdk) version 8, jdk1.8.0_20-b26 (32 bit).
The system configuration is as follows:

Operating system Windows 7 Home Basic

Processor
Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz
2.50 GHz

RAM 4 GB

System type 64-bit OS

V. THEORETICAL PROBLEM SOLVING OF MATRIX CHAIN

PRODUCT

Problem statement: Determine an optimal
parenthesization of a matrix chain product using dynamic
programming for the given sequence (5, 10, 3, 12, 5, 50, 6)
To determine an optimal parenthesization of a matrix chain
product using dynamic programming, we considered a
problem with the following sequence (5, 10, 3, 12, 5, 50, 6).
The solution to this problem is explained below.
Step 0:
Consider P0 = 5, P1 = 10, P2 = 3, P3 = 12, P4 = 5, P5 = 50, P6
= 6

m[1, 1] = 0, m[2, 2] = 0, m[3, 3] = 0, m[4, 4] = 0, m[5, 5] =
0, m[6, 6] = 0

Step 1:

m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj

where k = j − 1

m[1, 2] = m[1, 1] + m[2, 2] + (P0 × P1 × P2)
 = 0 + 0 + (5 × 10 × 3) = 150

m[2, 3] = m[2, 2] + m[3, 3] + (P1 × P2 × P3)
 = 0 + 0 + (10 × 3 × 12) = 360

m[3, 4] = m[3, 3] + m[4, 4] + (P2 × P3 × P4)
 = 0 + 0 + (3 × 12 × 5) = 180
m[4, 5] = m[4, 4] + m[5, 5] + (P3 × P4 × P5)
 = 0 + 0 + (12 × 5 × 50) = 3000

m[5, 6] = m[5, 5] + m[6, 6] + (P4 × P5 × P6)
 = 0 + 0 + (5 × 50 × 6) = 1500
Step 2:

m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj

where k = j − 1

m[1, 3] = m[1, 1] + m[2, 3] + (P0 × P1 × P3)
 = 0 + 360 + (5 × 10 × 12) = 600

m[1, 3] = m[1, 2] + m[3, 3] + (P0 × P2 × P3)
 = 150 + 0 + (5 × 3 × 12) = 330

m[2, 4] = m[2, 2] + m[3, 4] + (P1 × P2 × P4)
 = 0 + 180 + (10 × 3 × 5) = 330

m[2, 4] = m[2, 3] + m[4, 4] + (P1 × P3 × P4)
 = 360 + 0 + (10 × 12 × 5) = 960

m[3, 5] = m[3, 3] + m[4, 5] + (P2 × P3 × P5)
 = 0 + 3000 + (3 × 12 × 50) = 4800

m[3, 5] = m[3, 4] + m[5, 5] + (P2 × P4 × P5)
 = 180 + 0 + (3 × 5 × 50) = 930

m[4, 6] = m[4, 4] + m[5, 6] + (P3 × P4 × P6)
 = 0 + 1500 + (15 × 5 × 6) = 1860

m[4, 6] = m[4, 5] + m[6, 6] + (P3 × P5 × P6)
 = 3000 + 0 + (12 × 50 × 6) = 6600

Step 3:

m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj

where k = j − 1

m[1, 4] = m[1, 1] + m[2, 4] + (P0 × P1 × P4)
 = 0 + 330 + (5 × 10 × 5) = 580

m[1, 4] = m[1, 2] + m[3, 4] + (P0 × P2 × P4)
 = 150 + 180 + (5 × 3 × 5) = 405

m[1, 4] = m[1, 3] + m[4, 4] + (P0 × P3 × P4)
 = 330 + 0 + (5 × 12 × 5) = 630

m[2, 5] = m[2, 2] + m[3, 5] + (P1 × P2 × P5)
 = 0 + 930 + (10 × 3 × 50) = 2430

m[2, 5] = m[2, 3] + m[4, 5] + (P1 × P3 × P5)
 = 360 + 3000 + (10 × 12 × 50) = 9360

m[2, 5] = m[2, 4] + m[5, 5] + (P1 × P4 × P5)
 = 330 + 0 + (10 × 5 × 50) = 2830

m[3, 6] = m[3, 3] + m[4, 6] + (P2 × P3 × P6)

Vivian Brian Lobo et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 786-792

www.ijcsit.com 790

 = 0 + 1860 + (3 × 12 × 6) = 2076
m[3, 6] = m[3, 4] + m[5, 6] + (P2 × P4 × P6)
 = 180 + 1500 + (3 × 5 × 6) = 1770

m[3, 6] = m[3, 5] + m[6, 6] + (P2 × P5 × P6)
 = 930 + 0 + (3 × 50 × 6) = 1830

Step 4:

m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj

where k = j − 1

m[1, 5] = m[1, 1] + m[2, 5] + (P0 × P1 × P5)
 = 0 + 2430 + (5 × 10 × 50) = 4930

m[1, 5] = m[1, 2] + m[3, 5] + (P0 × P2 × P5)
 = 150 + 930 + (5 × 3 × 50) = 1830

m[1, 5] = m[1, 3] + m[4, 5] + (P0 × P3 × P5)
 = 330 + 3000 + (5 × 12 × 50) = 6330

m[1, 5] = m[1, 4] + m[5, 5] + (P0 × P4 × P5)
 = 405 + 0 + (5 × 5 × 50) = 1655

m[2, 6] = m[2 ,2] + m[3, 6] + (P1 × P2 × P6)
 = 0 + 1770 + (10 × 3 × 6) = 1950

m[2, 6] = m[2, 3] + m[4, 6] + (P1 × P3 × P6)
 = 360 + 1860 + (10 × 12 × 6) = 2940

m[2, 6] = m[2, 4] + m[5, 6] + (P1 × P4 × P6)
 = 330 + 1500 + (10 × 5 × 6) = 2130

m[2, 6] = m[2, 5] + m[6, 6] + (P1 × P5 × P6)
 = 2430 + 0 + (10 × 50 × 6) = 5430

Step 5:

m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj

where k = j − 1

m[1, 6] = m[1, 1] + m[2, 6] + (P0 × P1 × P6)
 = 0 + 1950 + (5 × 10 × 6) = 2250

m[1, 6] = m[1, 2] + m[3, 6] + (P0 × P2 × P6)
 = 150 + 1770 + (5 × 3 × 6) = 2010

m[1, 6] = m[1, 3] + m[4, 6] + (P0 × P3 × P6)
 = 330 + 1860 + (5 × 12 × 6) = 2550

m[1, 6] = m[1, 4] + m[5, 6] + (P0 × P4 × P6)
 = 405 + 1500 + (5 × 5 × 6) = 2055

m[1, 6] = m[1, 5] + m[6, 6] + (P0 × P5 × P6)
 = 1655 + 0 + (5 × 50 × 6) = 3155

The optimal parenthesization of a matrix chain product
using dynamic programming for the given sequence (5, 10,
3, 12, 5, 50, 6) is ((A1 × A2)((A3 × A4)(A5 × A6))). From the
above solution of the given problem, we can see that all
possible ways of obtaining the parenthesization of a matrix
chain product using dynamic programming are performed.
In other words, all possible solutions are obtained, and from
those solutions, the optimal solution is taken, i.e., from Step
2 to Step 5, we have selected only those solutions that
provide the least or minimum value, which can be reflected
in the minimum cost table, as shown in Fig. 1. The
respective k values are included in the split table, as shown
in Fig. 2.

Fig. 1. Minimum cost table

Fig. 2. Split table

Fig. 3. Tree for optimal parenthesization

Vivian Brian Lobo et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 786-792

www.ijcsit.com 791

Backtracking is a method that helps in determining the
optimal parenthesization of a matrix chain product for a
given sequence by dynamic programming (i.e., it helps in
obtaining the final solution, as shown below). In Fig. 3, we
observe that the leaf nodes in the tree for optimal
parenthesization are (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), and
(6, 6). However, to obtain these leaf nodes, we first check
Step 5. In Step 5, the minimum value obtained is 2010,
which is derived from m[1, 6], which is a combination of
m[1, 2] and m[3, 6]. Hence, we consider (1, 6) as the first
coordinate (Fig. 3). Now, we see that the value of m[i, j] in
m[1, 6] is m[1, 2] and the value of m[k + 1, j] in m[1, 6] is
m[3, 6], and thus, we check for m[1, 2] and m[3, 6] from
Step 1 to 4. The desired value of m[1, 2] is found in Step 1
and that of m[3, 6] is found in Step 3. We observe that m[1,
2] has a single value (i.e., it does not have the concept of
minimum values), and so, we observe that m[1, 2] is a
combination of m[1, 1] and m[2, 2]. Thus, we can split (1, 2)
as (1, 1) and (2, 2), as shown in Fig. 3. Now, for m[3, 6],
we check in which step does it occur and we consider the
minimum value. From our observation, we perceive that
m[3, 6] is present in Step 3 and the minimum value is 1770.
Furthermore, m[3, 6] is a combination of m[3, 4] and m[5,
6]. Thus, we can split (3, 6) as (3, 4) and (5, 6), which can
be seen in Fig. 3. Finally, we check for m[3, 4] and m[5, 6].
The abovementioned procedure is followed and (3, 4) is
split as (3, 3) and (4, 4), whereas (5, 6) is split as (5, 5) and
(6, 6) (Fig. 3). We stop when the leaf nodes are (1, 1), (2, 2),
(3, 3), (4, 4), (5, 5), and (6, 6). From Fig. 3, we can now
determine the optimal solution. First, we obtain (A1 × A2).
Second, we obtain (A3 × A4) and (A5 × A6). Third, we
combine ((A3 × A4)(A5 × A6)), and finally, we combine
((A1 × A2)((A3 × A4)(A5 × A6))), which gives the final
solution.

VI. COMPLEXITY OF MATRIX CHAIN PRODUCT

The time complexity of matrix chain product is O(n3), and
the space complexity of matrix chain product is O(n2) [10].

VII. CONCLUSION

Matrix chain product problem encompasses the question
how the optimal classification for performing a series of
operations can be determined. Moreover, matrix chain
product problem is not actually to perform multiplication
but simply to decide the order to perform multiplication.
Thus, we have successfully determined the optimal
parenthesization of a matrix chain product for a given
sequence by dynamic programming using practical as well
as theoretical approaches.

REFERENCES
[1] B. Bhowmik, “Simplified optimal parenthesization scheme for

matrix chain multiplication problem using bottom-up practice in 2-
tree structure,” Journal of Applied Computer Science &
Mathematics, vol. 11, no. 5, pp. 9-14, 2011.

[2] R. Lakhotia, S. Kumar, R. Sood, H. Singh, and J. Nabi, “Matrix-
chain multiplication using greedy and divide-conquer approach,”
International Journal of Computer Trends and Technology, vol. 23,
no. 2, pp. 65-72, May 2015.

[3] https://edurev.in/studytube/10202014-1--/5dd4be9f-8f66-40ec-
b5d9-c99adae64fc4_p

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
“Introduction to algorithms,” MIT Press, July 14, 1990.

[5] www.slidefinder.net/m/matrix_mult/matrix-mult/7256761
[6] http://pt.slideshare.net/kumar_vic/matrix-mult-class17
[7] http://www.purplemath.com/modules/mtrxmult.htm
[8] http://docslide.us/documents/analysis-of-algorithms-chapter-07-

dynamic-programming.html
[9] P. Gupta, V. Agarwal, and M. Varshney, “Design and analysis of

algorithms,” 2nd Edition, PHI Learning Private Limited (New Delhi),
ISBN-978-81-203-4663-5.

[10] http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorith
ms/Dynamic/chainMatrixMult.htm

Vivian Brian Lobo et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 786-792

www.ijcsit.com 792

